28627 measured reflections

 $R_{\rm int} = 0.058$

2 restraints

 $\Delta \rho_{\rm max} = 0.85 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

6709 independent reflections 4846 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

cis-1-Ethyl-4,4,10-trimethyl-2-tosyl-1,2,3,3a,4,11b-hexahydro-11H-pyrrolo-[3,4-c]pyrano[5,6-c]quinolin-11-one

K. Chinnakali,^a* D. Sudha,^a[‡] M. Jayagopi,^b R. Raghunathan^b and Hoong-Kun Fun^c*

^aDepartment of Physics, Anna University, Chennai 600 025, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

Received 24 October 2007; accepted 25 October 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.059; wR factor = 0.163; data-to-parameter ratio = 21.0

The molecule of the title compound, C₂₆H₃₀N₂O₄S, adopts a folded conformation, with the sulfonyl-bound benzene ring lying over the pyridinone ring [centroid-to-centroid distance = 3.893 (1) Å], forming a dihedral angle of 23.87 (5)°. The pyrrolidine ring adopts a twist conformation and the dihydropyran ring is in a half-chair conformation. The pyrrolidine and dihydropyran rings are cis-fused. The sulfonyl group has a distorted tetrahedral geometry. In the crystal structure, the molecules are linked into a centrosymmetric $R_2^2(12)$ dimer by C-H···O hydrogen bonds. The dimers are cross-linked into a sheet parallel to the bc plane via $C-H\cdots\pi$ interactions involving the benzene ring of the quinolinone ring system. The ethyl group is disordered over two positions; the siteoccupancy factors are ca 0.8 and 0.2.

Related literature

The structure of the title molecule is quite similar to that of 6,6-dimethyl-4-tosylpyrrolo[3,4-c]pyrano[5,6-c]-1-methylquinolin-2-one (Chinnakali et al., 2007). For biological activities of pyranoquinolinones, see: Butenschön et al. (2001); Edwards et al. (1999); Hanawa et al. (2004); Kamikawa et al. (1996); Keenan (1994); Wasserman (1995). For ring-puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976).

[‡] Currently working at the Department of Physics, R. M. K. Engineering College, R. S. M. Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

Crystal data

8 a
V = 2302.33 (7) A ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.18 \text{ mm}^{-1}$
T = 100.0 (1) K
$0.52 \times 0.43 \times 0.33 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.874, \ T_{\max} = 0.944$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.163$ S = 1.036709 reflections 319 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C17-C22 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O1^{i}$	0.98	2.48	3.282 (2)	139
$C4 - H4 \cdots O4$	0.98	2.38	2.974 (2)	118
$C25A - H25A \cdots Cg1^{ii}$	0.97	2.87	3.706 (3)	145

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF thanks Universiti Sains Malaysia for Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/ 671064.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2214).

References

- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Butenschön, I., Möller, K. & Hänsel, W. (2001). J. Med. Chem. 44, 1249-1256. Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, 04489-04490.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.
- Edwards, J. P., Higuchi, R. I., Winn, D. T., Pooley, C. L., Caferro, T. R., Hamann, L. G., Zhi, L., Marschke, K. B., Goldman, M. E. & Jones, T. K. (1999). Bioorg. Med. Chem. Lett. 9, 1003-1008.
- Hanawa, F., Fokialakis, N. & Skaltsounis, A. L. (2004). Planta Med. 70, 531-535.

Kamikawa, T., Hanaoka, Y., Fujie, S., Saito, K., Yamagiwa, Y., Fukuhara, K. & Kubo, I. (1996). *Bioorg. Med. Chem.* **4**, 1317–1320. Keenan, J. M. (1994). Am. Fam. Physician, 50, 1059-1064.

Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Spek, A. L. (2003). J. Appl. Cryst. **36**, 7–13. Wasserman, S. I. (1995). Allergy Proc. **16**, 67–71.

Acta Cryst. (2007). E63, o4491-o4492 [doi:10.1107/S1600536807053263]

cis-1-Ethyl-4,4,10-trimethyl-2-tosyl-1,2,3,3a,4,11b-hexahydro-11*H*-pyrrolo[3,4-*c*]pyrano[5,6-*c*]quinolin-11-one

K. Chinnakali, D. Sudha, M. Jayagopi, R. Raghunathan and H.-K. Fun

Comment

Some pyranoquinolone derivatives exhibit anti-inflammatory activity (Keenan, 1994; Wasserman 1995). Pyranoquinolone alkaloids exhibit photo-activated antimicrobial activity (Hanawa *et al.*, 2004) and SRS-A antagonist action (Kamikawa *et al.*, 1996). Pyranoquinolinones act as blockers of the voltage-gated potassium channel Kv1.3 (Butenschön *et al.*, 2001). 2*H*-pyrano[3,2-g]quinolin-2-one derivatives are found to modulate the transcriptional activity of the human androgen receptor (Edwards *et al.*, 1999). We report here the crystal structure of the title compound, a pyranoquinolinone derivative.

Bond lengths and angles in the title molecule (Fig. 1) are comparable to those observed in a related compound, 6,6-dimethyl-4-tosylpyrrolo[3,4-*c*]pyrano[5,6-*c*]-1- methylquinolin-2-one hemihydrate (Chinnakali *et al.*, 2007).

The pyrrolidine ring adopts a twist conformation, with the local twofold rotation axis passing through atom N1 and the mid-point of the opposite bond C2—C3; the asymmetry parameter (Duax *et al.*, 1976) $\Delta C_2[C2$ —C3] is 2.3 (2)°, and the puckering parameters (Cremer & Pople, 1975) are $q_2 = 0.370$ (2) Å and $\varphi = 92.2$ (3)°. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The dihydropyran ring is in a half-chair conformation, with a local pseudo-twofold rotation axis running through the midpoints of the C2—C5 and C6—C7 bonds. The puckering parameters Q, θ and φ , and the smallest displacement asymmetry parameter $\Delta C_2[C2$ —C5] are 0.438 (2) Å, 50.6 (3)°, 87.1 (3)° and 4.6 (3)°, respectively. The pyrrolidine ring is *cis*-fused to the dihydropyran ring. The quinolinone ring system is planar, with an r.m.s. deviation of 0.030 Å, and atoms O4 and C24 deviating from the mean plane by 0.171 (2) and 0.084 (3) Å, respectively.

As expected, the sulfonyl group has a distorted tetrahedral geometry, with the O1—S1—O2 [119.40 (9)°] angle deviating significantly from the ideal tetrahedral value. The molecule is in a folded conformation, with the sulfonyl-bound benzene ring lying over the pyridinone ring. The centroid-centroid distance [3.893 (1) Å] and the dihedral angle [23.87 (5)°] between the two rings indicate the presence of weak π - π interactions between them.

In the crystal structure, centrosymmetrically related molecules are linked by a pair of C2—H2…O1ⁱ hydrogen bonds (Table 1) into a $R_2^2(12)$ dimer. The dimers are linked into a sheet parallel to the *bc* plane (Fig. 2) *via* C25A—H25A… π interactions involving the C17–C22 ring (centroid *Cg*1) of the molecule at (1 - x, -1/2 + y, 1/2 - z).

Experimental

To a solution of 1-methylquinoline-2,4-dione (1 mmol) in dry toluene (20 ml), 2-[N-(3-methylbut-2-enyl)-N-tosylamino]butanal (1 mmol) and a catalytic amount of the base ethylenediamine-N,N-diacetate (EDDA) were added and the reaction mixture was refluxed for 12 h. After completion of the reaction, the solvent was evaporated under reduced pressure and the crude product was chromatographed using a hexane–ethyl acetate (8:2 ν/ν) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement

The ethyl group is disordered over two orientations (C25A,C26A/C25B,C26B) with refined occupancies of 0.760 (5) and 0.240 (5). The corresponding C—C distances in the disordered components were restrained to be equal. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å. The U_{iso} values were set equal to $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups attached to aromatic rings.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 80% probability level. Only one disorder component is shown.

Fig. 2. View of a hydrogen-bonded sheet in the title compound. Dashed and dotted lines indicate C—H···O and C—H··· π interactions, respectively. For the sake of clarity, H atoms not involved in the interactions have been omitted. Only one disorder component is shown.

cis-1-Ethyl-4,4,10-trimethyl-2-tosyl-1,2,3,3a,4,11b-hexahydro-11H-pyrrolo[3,4-c]pyrano[5,6-c]quinolin-11-one

Crystal data	
$C_{26}H_{30}N_2O_4S$	$F_{000} = 992$
$M_r = 466.58$	$D_{\rm x} = 1.346 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6924 reflections
a = 10.4111 (2) Å	$\theta = 2.2 - 28.4^{\circ}$
b = 13.8576 (2) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 18.0460 (3) Å	T = 100.0 (1) K
$\beta = 117.834 (1)^{\circ}$	Block, light yellow
$V = 2302.33 (7) \text{ Å}^3$	$0.52 \times 0.43 \times 0.33 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEXII CCD area-detector

6709 independent reflections

diffractometer

Radiation source: fine-focus sealed tube	4846 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{max} = 30.1^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 2.0^{\circ}$
ω scans	$h = -14 \rightarrow 14$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -15 \rightarrow 19$
$T_{\min} = 0.874, T_{\max} = 0.944$	$l = -25 \rightarrow 24$
28627 measured reflections	

Re	finement
ne	

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0874P)^2 + 0.4457P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\text{max}} = 0.001$
$\Delta \rho_{max} = 0.85 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.43 \text{ e } \text{\AA}^{-3}$
Extinction correction: none

Primary atom site location: structure-invariant direc methods

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displ	lacement	parameters	$(Å^2$	')
				1		1	1			1	1	/

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
S1	0.21372 (5)	0.08412 (3)	0.39792 (3)	0.02235 (13)	
O1	0.24491 (14)	0.04611 (10)	0.47870 (8)	0.0265 (3)	
O2	0.10426 (14)	0.03882 (10)	0.32371 (8)	0.0309 (3)	
O3	0.60238 (13)	0.32271 (10)	0.44037 (8)	0.0258 (3)	
O4	0.25960 (15)	0.22331 (11)	0.16712 (8)	0.0316 (3)	
N1	0.36407 (16)	0.07947 (11)	0.39179 (9)	0.0225 (3)	

N2	0.25256 (16)	0.37742 (12)	0.20890 (9)	0.0238 (3)	
C1	0.49235 (19)	0.12860 (14)	0.45792 (11)	0.0233 (4)	
H1A	0.5415	0.0874	0.5067	0.028*	
H1B	0.4646	0.1882	0.4748	0.028*	
C2	0.5894 (2)	0.14873 (14)	0.41714 (11)	0.0256 (4)	
H2	0.6491	0.0915	0.4237	0.031*	
C3	0.4814 (2)	0.16080 (14)	0.32352 (11)	0.0260 (4)	
H3	0.5295	0.1451	0.2896	0.031*	
C4	0.3652 (2)	0.08486 (14)	0.30939 (11)	0.0292 (4)	
H4	0.2700	0.1024	0.2635	0.035*	0.760 (5)
H4B	0.2776	0.1202	0.2762	0.035*	0.240 (5)
C5	0.68972 (19)	0.23514 (15)	0.45482 (12)	0.0276 (4)	
C6	0.48668 (18)	0.33451 (14)	0.36317 (11)	0.0224 (4)	
C7	0.42612 (19)	0.26299 (14)	0.30625 (11)	0.0229 (4)	
C8	0.16642 (18)	0.20637 (13)	0.39735 (11)	0.0212 (4)	
C9	0.09429 (19)	0.25587 (15)	0.32132 (11)	0.0252 (4)	
Н9	0.0673	0.2241	0.2708	0.030*	
C10	0.06369 (19)	0.35297 (15)	0.32241 (11)	0.0255 (4)	
H10	0.0164	0.3864	0.2720	0.031*	
C11	0.10221 (19)	0.40159 (14)	0.39735 (12)	0.0238 (4)	
C12	0.17227 (18)	0.35032 (14)	0.47219 (11)	0.0233 (4)	
H12	0.1971	0.3817	0.5226	0.028*	
C13	0.20556 (19)	0.25356 (14)	0.47281 (10)	0.0219 (4)	
H13	0.2537	0.2204	0.5233	0.026*	
C14	0.0690 (2)	0.50723 (15)	0.39761 (13)	0.0346 (5)	
H14A	0.0508	0.5355	0.3450	0.052*	
H14B	0.1502	0.5389	0.4423	0.052*	
H14C	-0.0154	0.5147	0.4057	0.052*	
C15	0.7767 (2)	0.22697 (16)	0.54924 (12)	0.0322 (5)	
H15A	0.7118	0.2179	0.5728	0.048*	
H15B	0.8319	0.2849	0.5714	0.048*	
H15C	0.8414	0.1728	0.5633	0.048*	
C16	0.7889 (2)	0.24952 (18)	0.41481 (14)	0.0376 (5)	
H16A	0.8506	0.3043	0.4398	0.056*	
H16B	0.7311	0.2604	0.3558	0.056*	
H16C	0.8476	0.1930	0.4237	0.056*	
C17	0.43063 (18)	0.43151 (14)	0.34636 (11)	0.0215 (4)	
C18	0.4934 (2)	0.50710 (15)	0.40380 (11)	0.0259 (4)	
H18	0.5740	0.4948	0.4551	0.031*	
C19	0.4376 (2)	0.59907 (15)	0.38551 (12)	0.0291 (4)	
H19	0.4804	0.6488	0.4239	0.035*	
C20	0.3159 (2)	0.61680 (15)	0.30867 (12)	0.0280 (4)	
H20	0.2766	0.6786	0.2965	0.034*	
C21	0.2532 (2)	0.54446 (14)	0.25068 (11)	0.0261 (4)	
H21	0.1727	0.5578	0.1996	0.031*	
C22	0.30974 (18)	0.45094 (14)	0.26793 (11)	0.0223 (4)	
C23	0.3089 (2)	0.28460 (14)	0.22321 (11)	0.0249 (4)	
C24	0.1320 (2)	0.39954 (15)	0.12554 (11)	0.0283 (4)	
H24A	0.0997	0.3412	0.0934	0.042*	

0.1646	0.4443	0.0973	0.042*	
0.0532	0.4275	0.1317	0.042*	
0.4228 (3)	-0.0123 (2)	0.29271 (17)	0.0268 (7)	0.760 (5)
0.4308	-0.0063	0.2415	0.032*	0.760 (5)
0.5194	-0.0241	0.3382	0.032*	0.760 (5)
0.3273 (3)	-0.0979 (2)	0.28484 (17)	0.0316 (7)	0.760 (5)
0.3686	-0.1552	0.2747	0.047*	0.760 (5)
0.2321	-0.0876	0.2390	0.047*	0.760 (5)
0.3205	-0.1054	0.3358	0.047*	0.760 (5)
0.3309 (9)	-0.0119 (5)	0.2635 (4)	0.026 (2)	0.240 (5)
0.2400	-0.0377	0.2576	0.032*	0.240 (5)
0.3237	-0.0046	0.2083	0.032*	0.240 (5)
0.4553 (8)	-0.0771 (6)	0.3171 (5)	0.027 (2)	0.240 (5)
0.4402	-0.1395	0.2914	0.041*	0.240 (5)
0.4609	-0.0832	0.3715	0.041*	0.240 (5)
0.5443	-0.0501	0.3226	0.041*	0.240 (5)
	0.1646 0.0532 0.4228 (3) 0.4308 0.5194 0.3273 (3) 0.3686 0.2321 0.3205 0.3309 (9) 0.2400 0.3237 0.4553 (8) 0.4402 0.4609 0.5443	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0256 (2)	0.0191 (2)	0.0208 (2)	-0.00014 (17)	0.00949 (17)	-0.00027 (17)
01	0.0326 (7)	0.0232 (7)	0.0264 (7)	0.0026 (6)	0.0160 (6)	0.0050 (5)
02	0.0288 (7)	0.0279 (8)	0.0293 (7)	-0.0029 (6)	0.0080 (6)	-0.0069 (6)
O3	0.0232 (6)	0.0245 (7)	0.0237 (6)	0.0032 (5)	0.0060 (5)	0.0050 (5)
O4	0.0423 (8)	0.0292 (8)	0.0215 (6)	0.0011 (6)	0.0136 (6)	-0.0016 (6)
N1	0.0275 (7)	0.0218 (8)	0.0174 (7)	0.0012 (6)	0.0099 (6)	-0.0003 (6)
N2	0.0244 (7)	0.0260 (9)	0.0198 (7)	-0.0011 (6)	0.0094 (6)	0.0018 (6)
C1	0.0259 (8)	0.0226 (10)	0.0200 (8)	0.0003 (7)	0.0097 (7)	0.0018 (7)
C2	0.0287 (9)	0.0242 (10)	0.0263 (9)	0.0070 (8)	0.0149 (8)	0.0049 (7)
C3	0.0319 (9)	0.0276 (11)	0.0230 (8)	0.0069 (8)	0.0167 (8)	0.0042 (7)
C4	0.0464 (11)	0.0250 (11)	0.0200 (8)	-0.0038 (9)	0.0187 (8)	-0.0016 (7)
C5	0.0231 (8)	0.0275 (11)	0.0319 (10)	0.0062 (8)	0.0126 (8)	0.0069 (8)
C6	0.0207 (8)	0.0252 (10)	0.0221 (8)	0.0005 (7)	0.0107 (7)	0.0069 (7)
C7	0.0254 (8)	0.0233 (10)	0.0234 (8)	0.0005 (7)	0.0143 (7)	0.0038 (7)
C8	0.0224 (8)	0.0195 (9)	0.0214 (8)	0.0012 (7)	0.0099 (7)	0.0026 (7)
С9	0.0249 (9)	0.0285 (11)	0.0198 (8)	0.0033 (8)	0.0086 (7)	0.0012 (7)
C10	0.0257 (8)	0.0281 (11)	0.0225 (8)	0.0046 (8)	0.0112 (7)	0.0077 (7)
C11	0.0204 (8)	0.0239 (10)	0.0284 (9)	0.0005 (7)	0.0125 (7)	0.0028 (7)
C12	0.0243 (8)	0.0232 (10)	0.0220 (8)	-0.0009 (7)	0.0104 (7)	-0.0021 (7)
C13	0.0232 (8)	0.0228 (10)	0.0179 (8)	-0.0004 (7)	0.0080 (6)	0.0017 (7)
C14	0.0391 (11)	0.0237 (11)	0.0366 (11)	0.0042 (9)	0.0141 (9)	0.0026 (9)
C15	0.0256 (9)	0.0325 (12)	0.0306 (10)	0.0044 (8)	0.0065 (8)	0.0078 (9)
C16	0.0269 (10)	0.0438 (14)	0.0459 (12)	0.0022 (9)	0.0202 (9)	0.0074 (10)
C17	0.0210 (8)	0.0219 (10)	0.0228 (8)	-0.0001 (7)	0.0113 (7)	0.0042 (7)
C18	0.0246 (8)	0.0264 (11)	0.0241 (8)	-0.0014 (8)	0.0092 (7)	0.0047 (8)
C19	0.0293 (9)	0.0272 (11)	0.0278 (9)	-0.0015 (8)	0.0107 (8)	0.0019 (8)
C20	0.0285 (9)	0.0242 (10)	0.0297 (9)	0.0016 (8)	0.0122 (8)	0.0052 (8)
C21	0.0238 (8)	0.0272 (11)	0.0241 (9)	0.0020 (8)	0.0086 (7)	0.0070 (8)

C22 C23 C24	0.0221 (8) 0.0296 (9) 0.0256 (9)	0.0237 (10) 0.0259 (10) 0.0340 (12)	0.0226 (8) 0.0228 (8) 0.0212 (8)	-0.0029 (7) 0.0001 (8) 0.0024 (8)	0.0116 (7) 0.0153 (7) 0.0075 (7)	0.0024 (7) 0.0035 (7) 0.0014 (8)
C25A C26A	0.0324 (16) 0.0366 (15)	0.0238 (16) 0.0271 (16)	0.0284 (13) 0.0337 (14)	-0.0023 (12) -0.0033 (11)	0.0176 (13) 0.0187 (12)	-0.0056 (11) -0.0077 (11)
C25B	0.018 (4)	0.039 (5)	0.017 (3)	-0.007 (3)	0.004 (3)	-0.001 (3)
C26B	0.034 (4)	0.029 (5)	0.023 (4)	-0.003(4)	0.017 (3)	-0.007(3)
Geometric paran	neters (Å, °)					
S1—O2		1.4356 (13)	C12—C	213	1.384	(3)
S1—O1		1.4374 (13)	C12—H	[12	0.93	
S1—N1		1.6212 (16)	C13—H	113	0.93	
S1—C8		1.7629 (19)	C14—H	I14A	0.96	
O3—C6		1.361 (2)	C14—H	I14B	0.96	
O3—C5		1.465 (2)	C14—H	I14C	0.96	
O4—C23		1.235 (2)	C15—H	I15A	0.96	
N1—C1		1.478 (2)	C15—H	I15B	0.96	
N1—C4		1.494 (2)	C15—H	115C	0.96	
N2—C23		1.387 (3)	C16—H	I16A	0.96	
N2—C22		1.391 (2)	C16—H	I16B	0.96	
N2—C24		1.473 (2)	C16—H	116C	0.96	
C1—C2		1.528 (2)	C17—C	218	1.402	(3)
C1—H1A		0.97	C17—C	222	1.413	(2)
C1—H1B		0.97	C18—C	C18—C19 1.		(3)
C2—C5		1.524 (3)	C18—H	118	0.93	
C2—C3		1.540 (2)	C19—C	220	1.395	(3)
С2—Н2		0.98	C19—H	119	0.93	
С3—С7		1.505 (3)	C20—C	21	1.374	(3)
C3—C4		1.532 (3)	C20—H	120	0.93	
С3—Н3		0.98	C21—C	222	1.397	(3)
C4—C25B		1.527 (7)	C21—H	121	0.93	
C4—C25A		1.559 (3)	C24—H	I24A	0.96	
C4—H4		0.98	C24—H	I24B	0.96	
C4—H4B		0.96	C24—H	I24C	0.96	
C5—C15		1.515 (3)	C25A-	-C26A	1.512	(4)
C5—C16		1.525 (3)	C25A-	-H25A	0.97	
С6—С7		1.353 (3)	C25A—	-H25B	0.97	
C6—C17		1.440 (3)	C26A—	-H26A	0.96	
C7—C23		1.455 (2)	C26A-	-H26B	0.96	
C8—C13		1.389 (2)	C26A—	-H26C	0.96	
С8—С9		1.398 (2)	C25B—	-C26B	1.503	(8)
C9—C10		1.385 (3)	C25B—	-H25C	0.97	
С9—Н9		0.93	C25B—	-H25D	0.97	
C10-C11		1.392 (3)	C26B—	-H26D	0.96	
С10—Н10		0.93	C26B—	-H26E	0.96	
C11—C12		1.393 (2)	C26B—	-H26F	0.96	
C11—C14		1.505 (3)				
O2—S1—O1		119.40 (9)	C12—C	213—Н13	120.3	

O2—S1—N1	106.87 (8)	C8—C13—H13	120.3
01—S1—N1	106.65 (8)	C11—C14—H14A	109.5
O2—S1—C8	108.47 (8)	C11—C14—H14B	109.5
O1—S1—C8	106.76 (8)	H14A—C14—H14B	109.5
N1—S1—C8	108.29 (8)	C11—C14—H14C	109.5
C6—O3—C5	117.44 (14)	H14A—C14—H14C	109.5
C1—N1—C4	110.90 (14)	H14B—C14—H14C	109.5
C1—N1—S1	117.64 (12)	C5—C15—H15A	109.5
C4—N1—S1	121.48 (13)	C5—C15—H15B	109.5
C23—N2—C22	122.96 (15)	H15A—C15—H15B	109.5
C23—N2—C24	117.89 (16)	C5—C15—H15C	109.5
C22—N2—C24	119.06 (16)	H15A—C15—H15C	109.5
N1—C1—C2	104.28 (14)	H15B—C15—H15C	109.5
N1—C1—H1A	110.9	C5-C16-H16A	109.5
C2—C1—H1A	110.9	C5-C16-H16B	109.5
N1—C1—H1B	110.9	H16A—C16—H16B	109.5
C2—C1—H1B	110.9	C5—C16—H16C	109.5
H1A—C1—H1B	108.9	H16A—C16—H16C	109.5
C5—C2—C1	113.45 (16)	H16B—C16—H16C	109.5
C5—C2—C3	113.65 (16)	C18—C17—C22	119.19 (17)
C1—C2—C3	103.88 (14)	C18—C17—C6	122.58 (16)
С5—С2—Н2	108.5	C22—C17—C6	118.21 (17)
С1—С2—Н2	108.5	C19—C18—C17	121.08 (17)
С3—С2—Н2	108.5	C19—C18—H18	119.5
C7—C3—C4	114.57 (16)	C17—C18—H18	119.5
C7—C3—C2	110.00 (16)	C18—C19—C20	119.16 (19)
C4—C3—C2	102.90 (15)	С18—С19—Н19	120.4
С7—С3—Н3	109.7	С20—С19—Н19	120.4
С4—С3—Н3	109.7	C21—C20—C19	121.09 (19)
С2—С3—Н3	109.7	С21—С20—Н20	119.5
N1—C4—C25B	112.8 (3)	С19—С20—Н20	119.5
N1—C4—C3	103.94 (14)	C20—C21—C22	120.41 (17)
C25B—C4—C3	131.3 (3)	C20—C21—H21	119.8
N1—C4—C25A	109.35 (17)	C22—C21—H21	119.8
C3—C4—C25A	106.26 (18)	N2—C22—C21	121.58 (16)
N1—C4—H4	112.3	N2—C22—C17	119.35 (17)
C25B—C4—H4	82.6	C21—C22—C17	119.05 (17)
C3—C4—H4	112.3	O4—C23—N2	120.50 (17)
C25A—C4—H4	112.3	O4—C23—C7	122.04 (18)
N1—C4—H4B	101.6	N2—C23—C7	117.46 (17)
C25B—C4—H4B	101.3	N2—C24—H24A	109.5
C3—C4—H4B	101.5	N2—C24—H24B	109.5
C25A—C4—H4B	131.3	H24A—C24—H24B	109.5
O3—C5—C15	104.91 (16)	N2—C24—H24C	109.5
O3—C5—C2	109.40 (14)	H24A—C24—H24C	109.5
C15—C5—C2	111.60 (16)	H24B—C24—H24C	109.5
O3—C5—C16	107.99 (16)	C26A—C25A—C4	113.6 (2)
C15—C5—C16	111.17 (16)	C26A—C25A—H25A	108.8
C2—C5—C16	111.47 (17)	C4—C25A—H25A	108.8

C7—C6—O3	124.43 (17)	C26A—C25A—H25B	108.8
C7—C6—C17	121.63 (16)	С4—С25А—Н25В	108.8
O3—C6—C17	113.94 (16)	H25A—C25A—H25B	107.7
C6—C7—C23	120.05 (17)	С25А—С26А—Н26А	109.5
C6—C7—C3	122.30 (16)	С25А—С26А—Н26В	109.5
C23—C7—C3	117.56 (17)	H26A—C26A—H26B	109.5
C13—C8—C9	120.55 (18)	С25А—С26А—Н26С	109.5
C13—C8—S1	119.56 (13)	H26A—C26A—H26C	109.5
C9—C8—S1	119.86 (14)	H26B—C26A—H26C	109.5
С10—С9—С8	118.98 (17)	C26B—C25B—C4	105.4 (5)
С10—С9—Н9	120.5	C26B—C25B—H25C	110.7
С8—С9—Н9	120.5	C4—C25B—H25C	110.7
C9—C10—C11	121.35 (17)	C26B—C25B—H25D	110.7
С9—С10—Н10	119.3	C4—C25B—H25D	110.7
C11-C10-H10	119.3	H25C—C25B—H25D	108.8
C10-C11-C12	118.55 (18)	C25B—C26B—H26D	109.5
C10-C11-C14	120.77 (17)	C25B—C26B—H26E	109.5
C12—C11—C14	120.68 (17)	H26D—C26B—H26E	109.5
C13—C12—C11	121.18 (17)	C25B—C26B—H26F	109.5
C13—C12—H12	119.4	H26D—C26B—H26F	109.5
C11—C12—H12	119.4	H26E—C26B—H26F	109.5
C12—C13—C8	119.38 (16)		
02—S1—N1—C1	175.21 (13)	N1—S1—C8—C13	-95.57 (15)
01—S1—N1—C1	-56.03 (15)	O2—S1—C8—C9	-33.33 (17)
C8 = S1 = N1 = C1	58.53 (15)	01-\$1-C8-C9	-163.20(14)
02-S1-N1-C4	32.76 (16)	N1 - S1 - C8 - C9	82.31 (16)
01—S1—N1—C4	161.52 (14)	C13—C8—C9—C10	0.6 (3)
C8—S1—N1—C4	-83.92 (15)	S1—C8—C9—C10	-177.22 (14)
C4—N1—C1—C2	-10.4 (2)	C8—C9—C10—C11	-0.5 (3)
S1—N1—C1—C2	-156.59 (12)	C9—C10—C11—C12	-0.3 (3)
N1—C1—C2—C5	153.67 (15)	C9—C10—C11—C14	179.68 (18)
N1—C1—C2—C3	29.77 (19)	C10-C11-C12-C13	1.1 (3)
C5—C2—C3—C7	-39.1 (2)	C14—C11—C12—C13	-178.91 (17)
C1—C2—C3—C7	84.63 (18)	C11—C12—C13—C8	-1.0 (3)
C5—C2—C3—C4	-161.64 (15)	C9—C8—C13—C12	0.1 (3)
C1—C2—C3—C4	-37.87 (18)	S1—C8—C13—C12	177.97 (13)
C1—N1—C4—C25B	134.0 (4)	C7—C6—C17—C18	-178.76 (17)
S1—N1—C4—C25B	-81.3 (4)	O3—C6—C17—C18	1.9 (2)
C1—N1—C4—C3	-13.2 (2)	C7—C6—C17—C22	-0.3 (3)
S1—N1—C4—C3	131.45 (14)	O3—C6—C17—C22	-179.61 (15)
C1—N1—C4—C25A	99.89 (19)	C22-C17-C18-C19	1.1 (3)
S1—N1—C4—C25A	-115.41 (18)	C6-C17-C18-C19	179.58 (17)
C7—C3—C4—N1	-88.26 (18)	C17—C18—C19—C20	0.5 (3)
C2—C3—C4—N1	31.12 (18)	C18—C19—C20—C21	-1.3 (3)
C7—C3—C4—C25B	133.3 (4)	C19—C20—C21—C22	0.6 (3)
C2—C3—C4—C25B	-107.3 (4)	C23—N2—C22—C21	178.04 (16)
C7—C3—C4—C25A	156.40 (17)	C24—N2—C22—C21	1.6 (3)
C2—C3—C4—C25A	-84.23 (18)	C23—N2—C22—C17	0.0 (3)
C6—O3—C5—C15	-163.06 (15)	C24—N2—C22—C17	-176.48 (16)

C6—O3—C5—C2	-43.2 (2)	C20-C21-C22-N2	-177.01 (17)
C6—O3—C5—C16	78.29 (19)	C20-C21-C22-C17	1.1 (3)
C1—C2—C5—O3	-63.18 (19)	C18—C17—C22—N2	176.24 (16)
C3—C2—C5—O3	55.21 (19)	C6-C17-C22-N2	-2.3 (2)
C1—C2—C5—C15	52.5 (2)	C18—C17—C22—C21	-1.9 (3)
C3—C2—C5—C15	170.86 (16)	C6-C17-C22-C21	179.59 (16)
C1—C2—C5—C16	177.44 (16)	C22—N2—C23—O4	-175.84 (17)
C3—C2—C5—C16	-64.2 (2)	C24—N2—C23—O4	0.6 (3)
C5—O3—C6—C7	16.5 (2)	C22—N2—C23—C7	4.6 (2)
C5—O3—C6—C17	-164.19 (14)	C24—N2—C23—C7	-178.86 (15)
O3—C6—C7—C23	-175.72 (15)	C6—C7—C23—O4	173.38 (17)
C17—C6—C7—C23	5.0 (3)	C3—C7—C23—O4	-3.1 (3)
O3—C6—C7—C3	0.6 (3)	C6—C7—C23—N2	-7.1 (3)
C17—C6—C7—C3	-178.68 (16)	C3—C7—C23—N2	176.42 (15)
C4—C3—C7—C6	126.67 (18)	N1-C4-C25A-C26A	63.3 (3)
C2—C3—C7—C6	11.4 (2)	C25B—C4—C25A—C26A	-38.9 (6)
C4—C3—C7—C23	-56.9 (2)	C3—C4—C25A—C26A	174.9 (2)
C2—C3—C7—C23	-172.27 (15)	N1-C4-C25B-C26B	-65.5 (6)
O2—S1—C8—C13	148.80 (14)	C3—C4—C25B—C26B	70.1 (6)
O1—S1—C8—C13	18.93 (17)	C25A—C4—C25B—C26B	24.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C2—H2···O1 ⁱ	0.98	2.48	3.282 (2)	139
C4—H4…O4	0.98	2.38	2.974 (2)	118
C25A—H25A…Cg1 ⁱⁱ	0.97	2.87	3.706 (3)	145

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, *y*-1/2, -*z*+1/2.

Fig. 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Seven papers on fused-ring heterocyclic ketones containing an *N*-tosylpyrrolo[3,4-c]pyrano moiety. Corrigenda

K. Chinnakali,^a* M. Jayagobi^b and Hoong-Kun Fun^c*

^aDepartment of Physics, Anna University, Chennai 600 025, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

Received 26 November 2007; accepted 27 November 2007

Corrections are made to the name of an author in seven papers by Chinnakali *et al.* [*Acta Cryst.* (2007), E**63**, 04363, 04364, 04434–04435, 04436–04437, 04438, 04489–04490 and 04491–04492].

In the papers by Chinnakali, Jayagopi *et al.* (2007a,b) and Chinnakali, Sudha *et al.* (2007a,b,c,d,e), the name of the author M. Jayagopi is given incorrectly. The correct name should be M. Jayagobi, as given above.

References

- Chinnakali, K., Jayagopi, M., Sudha, D., Raghunathan, R. & Fun, H.-K. (2007a). Acta Cryst. E63, 04363.
- Chinnakali, K., Jayagopi, M., Sudha, D., Raghunathan, R. & Fun, H.-K. (2007b). Acta Cryst. E63, 04364.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007a). Acta Cryst. E63, 04434–04435.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007b). Acta Cryst. E63, 04436–04437.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007c). Acta Cryst. E63, 04438.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007d). Acta Cryst. E63, 04489–04490.
- Chinnakali, K., Sudha, D., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007e). Acta Cryst. E63, 04491–04492.